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Abstract

We present an English translation of a 1918 paper by Felix Klein.

1. Translator’s Preface

In 1918 Felix Klein published a work [3] about a famous paper by
David Hilbert: The Foundations of Physics I [2]. Klein presented his
work in the form of a dialogue with Hilbert based on their correspon-
dence. Mainly it concerned the energy of the gravitational field, which
had been—and, notwithstanding considerable progress, still remains a
century later—an unsettled issue. It includes Klein’s simplified deriva-
tion of Hilbert’s energy vector, which he, Einstein and others were
trying to understand, and some remarks regarding Einstein’s gravita-
tional energy momentum density. It was a statement by Hilbert that
appears in this dialogue: “I maintain that for general relativity, i.e. in
the case of the general invariance of the Hamiltonian function, energy
equations which in your sense correspond to the energy equations of
the orthogonally invariant theories do not exist at all; indeed, I would
even call this fact a characteristic feature of the general theory of rel-
ativity. For my assertion the mathematical proof should be possible”,
which led to the investigation of Emmy Noether [5] containing her two
celebrated theorems regarding symmetry in dynamical systems. For
the detailed story concerning the exchanges of ideas between Einstein,
Hilbert and Klein (especially concerning gravitational energy) and the
inception of Noether’s theorems see Refs. [1, 4, 6].
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Some years ago the senior member of our team (JMN) began, relying
on his long unused undergraduate German and Google Translate, to
make a translation of this paper of Klein and a follow up work of his
on gravitational energy. We are fortunate to be able to have recently
acquired the help of a native German speaker (WV) to refine our efforts
into a presentable form. We feel that our translation has now finally
reached a form where it can be useful to others, and so want to share
it with anyone who may be interested.
The page by page layout, the equation numbers, and footnotes in

this version of our translation are from the paper as it appears in
Vol. 1 of Klein’s collected works [3]—so anyone who cares to can easily
compare our translation with the original. We chose to follow the Klein
collected works version as it includes some additional footnotes that
do not appear in the journal version (readers may find those regarding
Emmy Noether especially interesting). Our translation is a work in
progress. We welcome corrections and comments on the translation
and on any errors.
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XXXI. On Hilbert’s First Note on the Foundations of Physics.1

[News of the Kgl. Society of Sciences at Göttingen. Mathematical-physical class,
(1917). Submitted at the meeting of 25 January 1918.]

2. From a letter from F. Klein to D. Hilbert.

. . . By carefully studying your note, I have noticed that the intermediate calcu-
lations which you made can be considerably shortened by the use of the ordinary
Lagrange variation theorem, and in this way one can get a more accurate insight
into the importance of the conservation law which you set up for your energy vector.
In the following discussion of my considerations, I shall continue, as far as possible,
with your terms of reference, except that, for the sake of clarity, I distinguish the
world parameters w by upper indices:

wI , wII , wIII , wIV

and indeterminate indices by Greek letters. This makes it much easier to compare
with the parallel developments of Einstein, about which I also have to make a few
remarks.

1. I immediately begin, following your note on page 404, with the introduction
of the two integrals which I call I1 and I2:

(1) I1 =

∫

Kdω, I2 =

∫

Ldω,

where dω is the invariant space element

dω =
√
g · dwI . . . dwIV .

Here, K is the fundamental local invariant of the underlying ds2, which is written
using Riemann’s four-index symbols as follows:

(2) K =
∑

µ,ν,̺,σ

(µν, ̺σ)(gµ̺gνσ − gµσgν̺),

1 Göttinger Nachrichten, Math.-phys. class, (1915), p. 395–407 (Communication
of November 20, 1915).
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but for L, as I do not focus on the generality of physical requirements, I will write
the simplest value according to p. 407 of your work:

(3) L = αQ = −α
∑

µ,ν,̺,σ

(qµν − qνµ)(q̺σ − qσ̺)(g
µ̺gνσ − gµσgν̺).

In this case α is a very small number, according to Einstein’s conception, equal
to the gravitational constant multiplied by 8π

c2
, that is, in the units customary for

physicists, a very small number:

−α = 1, 87 · 10−27;

I express this numerical value explicitly; this is to show that Maxwell’s theory of
the electron-free space, which sets α = 0 and does not speak of K at all, can be
regarded as a sufficient approximation to the new approaches discussed here for
ordinary measurements. See further below, No. 5.

2. I now first form purely formally the variations of the integrals I1, I2, which
correspond to an arbitrary modification of the gµν , q̺ by2 δgµν , δq̺, and write
them abbreviated as follows:

δI1 =

∫

∑

µ,ν

Kµνδg
µνdω(4a)

δI2 = α

∫

(

∑

µ,ν

Qµνδg
µν +

∑

̺

Q̺δq
̺
)

dω.(4b)

Here Kµν , Qµν denote the well-known tensors, which are contragredient to the
products dwµdwν :

Kµν =





∂
√
gK

∂gµν
−
∑

̺

∂
(

∂
√
gK

∂g
µν

̺

)

∂w̺
+
∑

̺,σ

∂2

(

∂
√
gK

∂g
µν

̺σ

)

∂w̺∂wσ



 :
√
g,(5a)

Qµν =

(

∂
√
gQ

∂gµν

)

:
√
g,(5b)

however Q̺ is the vector cogredient to dw̺:

(6) Q̺ = −





∑

σ

∂
(

∂
√
gQ

∂q̺σ

)

∂wσ



 :
√
g.

The equations

(7) Q̺ = 0,

written in the coordinates w, are the Maxwell equations corresponding to our phys-
ical presuppositions; on the other hand the Qµν , as you mentioned on page 407 of
your note, are the energy components of the electromagnetic field.

2We make the assumption that δgµν , δgµν̺ , and δq̺ vanish at the boundary of

the region of integration.
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3. For the sake of clarity, in advance I will distinguish between the scalar diver-
gence of a “vector p̺” and the vectorial divergence of a “tensor tµν .” In our general
coordinates wν , the former is known to be expressed by the sum of:

(8)
∑

ν

∂(
√
gpν)

∂wν
:
√
g,

but the latter is somewhat more complicated: its four components are:

(9)

(

∑

µ,ν

∂(
√
gtµσg

µν)

∂wν
+

1

2

√
g
∑

µ,ν

tµνg
µν
σ

)

:
√
g

for σ = 1, 2, 3, 4.
4. I now develop the four simple partial differential equations which I1 and I2

respectively satisfy (because both are invariants under arbitrary transformations of
w). For this purpose, as in particular by Lie in his numerous relevant publications,
the formal changes which can be made in any infinitesimal transformation are

(10) δwI = pI , . . . , δwIV = pIV

(pσ is an infinitesimal vector whose higher powers may be neglected). — You have
done this for the integral I1 on pp 398–400 of your note in such a way that you
consider the comparatively complicated changes of K in order to ascend from there
through integration to the change of I1. The whole simplification of the idea is that
I shall follow the formula (4a), that is, calculate the change of I1 directly from the
Lagrange derivative. The change of I1 has to be zero, if I (in 4a) use for the δgµν

those values which correspond to the infinitesimal transformation (10). Since the
gµν are cogredient with dwµdwν , one simply finds

(11) δgµν =
∑

σ

(gµνσ pσ − gµσpνσ − gνσpµσ).
3

Therefore we have [by setting the pσ at the boundary equal to zero]:
∫

∑

µ,ν

Kµν

(

∑

σ

gµνσ pσ −
∑

σ

gµσpνσ −
∑

σ

gνσpµσ

)

dω = 0.

3[This is explained in more detail in §1 of the following chapter XXXII.]
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Here, we transform the terms pµσ, p
ν
σ in the known manner by partial integration,

while subjecting the otherwise arbitrary pσ to the condition of having first and
second differential quotients vanishing at the boundaries of the integration. We
then get

∫

∑

σ

pσ

(

√
g
∑

µ,ν

Kµνg
µν
σ + 2

∑

µ,ν

∂(
√
gKµσg

µν)

∂wν

)

dwI . . . dwIV = 0,

and from this, because of the arbitrariness of the pσ, the four differential equations
for the tensor Kµν , established by you (and Einstein):

(12)
√
g
∑

µ,ν

Kµνg
µν
σ + 2

∑

µ,ν

∂(
√
gKµσg

µν)

∂wν
= 0 (σ = 1, 2, 3, 4)

which we can clearly interpret as saying: the vectorial divergence of the tensor Kµν

vanishes.
The integral I2 will be treated in exactly the same way. In addition to the

increments (11) of the gµν , then only the following increments of the q̺ occur:4

(13) δq̺ =
∑

σ

(q̺σp
σ + qσp

σ
̺ ).

We thus obtain the following four differential equations for the Qµν , Q
̺:

(14)
∑

µ,ν

(√
gQµνg

µν
σ + 2

∂(
√
gQµσg

µν)

∂wν

)

+
∑

̺

(√
gQ̺g̺σ − ∂(

√
gQ̺qσ)

∂w̺

)

= 0

for σ = 1, 2, 3, 4.
It is unnecessary to put them into words. But it is well worth considering a

transformation which they allow because of the special form of our Q (and mutatis
mutandis also occurs at different points in your note). Q depends only on the
differences q̺σ − qσ̺ and therefore, as a glance at (6) shows, one has a vanishing
scalar divergence:

∑

̺

∂(
√
gQ̺)

∂w̺
= 0.

As a result, we can put the differential equations (14) into another form:

(14′)
∑

µ,ν

(√
gQµνg

µν
σ + 2

∂(
√
gQµσg

µν)

∂wν

)

+
∑

̺

(
√
gQ̺(q̺σ − qσ̺)) = 0

for σ = 1, 2, 3, 4.

4My δgµν (11) and δq̺ (13) are nothing other than that designated, in p. 398 of
your note, by pµν and p̺, respectively.
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5. From now on I introduce the basic assumption of Einstein’s theory, most
preferably, in the form chosen by you in your note, which is said to be that the
variation should be

(15) δI1 + δI2 = 0

for arbitrary δgµν , δq̺.
According to (4a), (4b), this gives the known 14 “field equations”, namely the

ten equations:

(16a) Kµν + αQµν = 0

and the four equations

(16b) Q̺ = 0.

You remark in your note, that there must be four dependencies between these
fourteen equations, and show on p. 406, through special calculations, the relation-
ship between the four equations (16b) — the Maxwell equations — and the ten
equations (16a). Naturally, this has been already included by me in the formulas
of the previous numbers. In fact, it is only necessary to add the equations (14’)
multiplied by α to the equations (12), in order to immediately deduce the vanishing
of the Q̺ as a consequence of the equations (16a).

At the same time, it is clear what was said about the character of the old
Maxwellian theory as a limit of the new theory. If we treat the old Maxwellian
theory in arbitrary curvilinear coordinates wI . . . wIV , we have always to do with
a ds2 whose Riemannian curvature vanishes identically, for which, therefore, the
Kµν simply are zero. On the other hand, α = 0 is taken. Thus the ten equations
(16a) are fulfilled by themselves; the energy components Qµν of the electromagnetic
field are no longer subject to any restriction. There remains only the four equations
(16b), i.e. the Maxwell equations. As a consequence of these, the Qµν according to
(14) have a vanishing vectorial divergence.

Of course, before Einstein, we have introduced curvilinear coordinates w in
physics only in such a way that we have arbitrarily transformed the three spa-
tial coordinates, but left t essentially unchanged. To include the t equally in the
coordinate transformation, appears as one great achievement of Einstein. Another
is then, of course, that gravitation can be taken into account by substituting for
the ds2 with vanishing Riemann curvature a more general ds2. — On the other
hand, in order to emphasize this, the mathematical armament for the processing of
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these new physical ideas was long ago made available, since spaces of any number
of dimensions with arbitrary arc elements have been familiar to us since Riemann.
This is not the place for a historical excursion that would begin with the methods
of Lagrange’s Mecanique analytique, where in addition to the ever-recurring work
of Christoffel, those of Beltrami and Lipschitz should be discussed.

6. Now, without using the field equations (16), I want to add the equations (12),
(14) together after multiplying the latter by α. This gives for σ = 1, 2, 3, 4 the
identities:

∑

µ,ν

√
g(Kµν + αQµν)g

µν
σ +

∑

̺

α
√
gQ̺q̺σ(17)

= −2
∑

µ,ν

∂[
√
g(Kµσ + αQµσ)g

µν − α
2
Qνqσ]

∂wν
.

I multiply these equations by pσ (where by pσ, an arbitrary vector cogredient to
dwσ is understood), and sum according to σ. Here, on the right hand, I can take
the pσ inside the differentiation signs by placing the corresponding supplementary
terms on the left hand. On the other hand, I exchange the index names σ and ν on
the left hand, and instead of 2gµσpνσ, use the symmetrical gµσpνσ + gνσpµσ, which is
equivalent in the context of these considerations. Thus, the following is produced:

∑

µ,ν,σ

√
g(Kµν + αQµν)(g

µν
σ pσ − gµσpνσ − gνσpµσ)(18)

+
∑

̺,σ

α
√
gQ̺(q̺σp

σ + qσp
σ
̺)

= −2
∑

µ,ν,σ

∂{[√g(Kµσ + αQµσ)g
µν − α

2

√
gQνqσ]p

σ}
∂wν

,

which naturally is only another way of writing (17). In view of the particular value
which I have assumed for your H from the beginning (H = K +αQ), the left hand
here is exactly what you give as the value of the scalar divergence of your energy
vector eν multiplied by

√
g (p 402 in your Note), thus

∑

ν

∂
√
geν

∂wν
.

It follows that your energy vector eν from
(

−2
∑

µ,σ

(Kµσ + αQµσ)g
µν +

α

2

√
gQνqσ

)

pσ

[Editor’s note: A missing left parenthesis has been inserted.]
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only differs by a term whose scalar divergence vanishes identically.
If we now take the 14 field equations (16a), (16b), then eν is reduced to this

additional term and the statement on p. 402 of your note, that

(19)
∑

ν

∂
√
geν

∂wν
= 0

holds, appears as an identical statement. This statement cannot, therefore, be
regarded as an analogy to the conservation law of energy, as is the case in ordinary
mechanics. For if we write in the latter:

d(T + U)

dt
= 0,

then this differential relation is not identically satisfied, but only as a result of the
differential equations of mechanics.

7. Of course, it would be desirable to specify explicitly the additional terms on
which your eν differs from the vanishing elements due to the field equations. But
I find your formulas so complicated that I have not done the calculations. Only
this seems clear: that it comprises components linear in the pσ, others containing
the pσµ, and perhaps those which contain the pσµν linearly. It should not be difficult
to specify the most general vectors of this type whose scalar divergence vanishes
identically. We obtain generally vectors Xν of vanishing divergence by starting
from any six-tensor (an obliquely symmetrical tensor) λµν and setting

(20)
√
gXν =

∑

µ

∂λµν

∂wµ
.

If one wants to have linearity of the Xν in the pσ and the pσµ, then one can for
example choose

(21) λµν =
(

(

∑

gµ̺q̺
)

pν −
(

∑

gν̺q̺
)

pµ
)

.

8. Here I have to make a substantial digression. You know that Miss Nöther
continues to advise me on my work, and that I have only penetrated into the present
matter through her. When I was speaking recently to Miss Nöther of my results
concerning your energy vector, she was able to inform me that she had derived the
same results on the basis of your note (and thus not from the simplified calculations
of my number 4) more than a year ago, and put it in a manuscript (which I was
later able to read); only she had not stated it as forcefully as I had done recently
at the Mathematical Society (22. January).
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9. Finally, I would like to draw your attention to the fact that for the “conser-
vation laws” as Einstein formulated in 1916,5 the same is true for your proposition
(19). He is actually stating it completely clearly. I will not go into the details of his
calculation here, but will only refer to his conclusion, which he writes as follows:

(22)
∑

ν

∂

∂wν
(Tν

σ + t
ν
σ) = 0, (σ = 1, 2, 3, 4),

where the Tν
σ and the tνσ are referred to as the “mixed” energy components of

the electromagnetic or gravitational field. He states that these Tν
σ + tνσ can be

expressed using the field equation as follows by means of a function G∗ dependent
on the coordinate system:

(23) T
ν
σ + t

ν
σ = −

∑

µ,̺

(

∂

∂w̺

(

∂G∗

∂g
µσ
̺

gµν
))

,

and that for this G∗ independently of the value of σ there is the identical equation:

(24)
∑

µ,ν,̺

∂2

∂wν∂w̺

(

∂G∗

∂g
µσ
̺

gµν
)

= 0.

That is exactly what matters.
In order to establish the connection with the terms used by me, I note that

Einstein’s Tν
σ are the same as my

∑

µ

√
gQµσg

µν , Einstein’s tνσ may deviate from

the corresponding 1

α

∑

µ

√
gKµσg

µν by a summand which results if the equations

(23) are compared with the field equations

Kµν + αQµν = 0.

II. From the answer of D. Hilbert.

. . . I agree with your comments on the energy law: Emmy Nöther, upon whose
help I called on for more than a year to clarify such analytical questions concerning
my energy theorems, found at that time that the energy components I had set
up—as well as those of Einstein—can be converted, formally using the Lagrange
differential equations (4), (5) of my first note, into expressions whose divergence is
identical, that is without using Lagrange’s equations (4), (5) it vanishes.

5Compare the independently published work: The Foundations of the General
Theory of Relativity (Leipzig, 1916) and, in particular, the communication to the
Berlin Academy of 29 October 1916, “Hamilton’s Principle and General Relativity
Theory” (Session Reports, pp. 1111–1116).
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On the other hand, since the energy equations of classical mechanics, elasticity the-
ory, and electrodynamics are only satisfied with the Lagrange differential equations
of the problem, then it is justified if you do not see the analogy with these theories
in my energy equations. To be sure, I maintain that for general relativity, i.e. in
the case of the general invariance of the Hamiltonian function, energy equations
which in your sense correspond to the energy equations of the orthogonally invari-
ant theories do not exist at all; indeed, I would even call this fact a characteristic
feature of the general theory of relativity. For my assertion the mathematical proof
should be possible.

On this occasion, please allow me to briefly explain how, in my lecture of the
last winter, I dealt with the energy equations of the orthogonal invariant theories
of physics (electrodynamics, hydrodynamics, and elasticity theory).

For the sake of brevity, let us assume that the world function H as an orthog-
onal invariant which depends only on the components of the electrodynamic four-
potentials qs and their first derivatives qsl on wk (s, l = 1, 2, 3, 4), — The methods
apply in the same way, if H is a four-fold density of r and its derivatives, or else of
other physical parameters, along with their derivatives,—: then the Hamiltonian
principle is

(1) δ

∫

Hdω = 0.

The system of the four Lagrangian differential equations is

(2) [H ]s = 0, (s = 1, 2, 3, 4)

where

[H ]s =
∂H

∂qs
−
∑

k

∂

∂wk

∂H

∂qsk
.

In order to arrive at the energy equations of this problem, we propose the path
which the statements of my first communication pointed out, namely, the path
through gravitation theory. Let H̄ be a general invariant with the arguments

qs, qsl, g
µν , g

µν
l

which for

(3) gµν = gµν = δµν , g
µν
l = 0

—————————
Klein, Collected math. Treatises. I. 36
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into H transforms; we obtain this by substituting the covariant derivatives

q̄sl = qsl −
∑

h

{

sl

h

}

qh

instead of qsl and at the same time performing the convolution with gµν . For
example, if H contains the orthogonally invariant expression

(4) −Q =
∑

m,n

(qmn − qnm)2 =
1

4

∑

m,n

M2

mn,

then it must be replaced by

−Q̄ =
1

4

∑

m,n,k,l

MmnMklg
mkgnl.

The expression

T =
∑

s,h

q2sh

is to be converted into
T̄ =

∑

s,h,m,n

q̄shq̄mng
smghn,

and so on.
Now, for every general invariant there is an identity, which in my first communi-

cation (Theorem III) has been proved only in the case that the invariant depends
on the gµν and its derivatives; but the invoked proof method also applies to our
general invariant H̄. Using the nomenclature of my first note, we get instead of the
equation there,

∫

Pg(J
√
g)dω = 0

in our case the equation
∫

{Pg(H̄
√
g) + Pq(H̄

√
g)}dω ≡

∫

{P (H̄
√
g)}dω = 0,

an identity that immediately results is
∫

{

∑

µ,ν

[
√
gH̄ ]µνp

µν +
∑

µ

[
√
gH̄]µpµ

}

dω = 0.

After the introduction of pµν , pµ, and the application of partial integration, we can
bring the integral of the left hand side to a form in which the integrand is multiplied
by ps; but since ps is an arbitrary vector, the other factor under the integral sign
must be identically zero, and this gives the identities (s = 1, 2, 3, 4):6

∑

µ,ν

[
√
gH̄ ]µνg

µν
s − 2

∑

m

∂

∂wm

{

∑

µ

[
√
gH̄]µsg

µm
}

(5)

+
∑

µ

[
√
gH̄ ]µqµs −

∑

µ

∂

∂wµ

([
√
gH̄ ]µqs) = 0.

6[See in this case my formula (14), which agrees with this term by term. K.]
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These four identities are, as you have already pointed out above, those whose
existence is asserted in my Theorem I, between the 14 Lagrangian equations of our
problem.

If we now return to the original problem (1) by eliminating the gravitational
potentials based on (3) and taking into account Lagrange’s differential equations
(2), the identities (5) go over to

(6)
∑

m

∂

∂wm

{[√gH̄ ]ms}gµν=δµν
= 0.

If we denote the bracketed terms

(7) εms = 2{[√gH̄]ms}gµν=δµν

as the components of the energy tensor, we obtain the desired energy equations of
the physical problem (1) in the divergence equations (6).

If we take especially for H the invariant Q in (4), then εms are the components
of the known electromagnetic energy tensor, and because of the Maxwell equations

{[√gH̄]m}gµν=δµν
= DivmM = rm

— by r the electric four current density is understood — in this case our identities
(5) become

Divsε−
∑

m

rmqms +
∑

m

∂

∂wm

(rmqs) = 0

or because of Divs r = 0:
Divsε = −rs ·M,

i.e., it provides the well-known divergence expression for the ponderomotive force.
Only in the case of general relativity, that is, when the original invariant H is

a general invariant, the given path for producing energy equations for problem (1)
fails. In the general theory of relativity, as a substitute for the missing energy equa-
tions in your sense, we have the fact of the fourfold excess of the Lagrange equations
(theorem I of my first communication), as expressed above in the four identities
(5). Conversely, the energy statement of the orthogonally invariant theories appear
as the residue of those four identities of gravitation theory.

36 *
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It should be noted that the energy tensor (7) not only, as is immediately evident,
has the properties of orthogonal invariance and symmetry, but also, in addition,
the requirements of the particular physical theory are met each time: in the case
of electrodynamics, H which only contains qsl in the compound

Mks = qsk − qks,

also depends only on these components of the six-vectorM , and, on the other hand,
in the case of the elasticity theory, it also depends only on the actual distortion
variables which occur in the questions of elasticity. . . .

III. From another letter by F. Klein.

. . . It is up to me to characterize the difference between the orthogonal-invariant
theory of electrodynamics and the gravitational force.

In this regard, it is especially clarifying, if one, as I indicated above (no. 5), as
an intermediary, turns to the treatment of classical electrodynamics in arbitrary
(“curvilinear”) world coordinates.

Your main statement, that the energy components of the electrodynamic field
are simply represented by the Qµν , then comes to the fore in its entire meaning; I
would therefore prefer not to rely on modern gravitation theory in this theorem.

Also, I find it useful to keep the integrals
∫

Kdω and
∫

Qdω apart in the repre-
sentation, and not to merge from the beginning to an integral

∫

Hdω.
We then have four identities for the Kµν and the Qµν [the equations (12) and

(14) — or (14’) — of my first letter], and hence on the whole eight, and the contrast
of the earlier and the present theory can then be formulated in precise sentences as
follows:

1. In both cases in addition to the eight identities we have 14 “field equations”
for the comparison that is considered here.

2. These are in the earlier theory

a) Kµν = 0, 7 b) Q̺ = 0.

By virtue of the ten equations a) and the four equations b), the four identities (12)
are fulfilled by themselves, the identities (14) — or (14′)—however are reduced by
virtue of the four equations (b) to the four statements which are called the four
conservation statements (momentum-energy).

7[As a result of the 20 equations which show the identical disappearance of
Riemann’s curvature. K.]
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3. Therefore in the new theory one has the field equations

a′) Kµν + αQµν = 0, with α 6= 0, b′) Q̺ = 0.

Now the equations Q̺ = 0 by virtue of the eight identities appear as a result of the
ten equations (a′).

From the identities (14), if the Q̺ is omitted, they are still “conservation laws”
for the Qµν . But these now have no independent (physical) meaning, because they
reduce by virtue of the ten equations (a′) to the four identities (12); they are already
included in the ten field equations.

All this is factually in full agreement with the expositions of your letter. However,
I would be very interested to see the execution of the mathematical proof that you
promised at the end of the first paragraph of your answer. .......

———————-

[The stated demonstration has now been provided by Miss E. Nöther, see her
note on “Invariant Variational Problems” in the Göttingen news of 26 July 1918. I
return to this at the close of XXXII.

Moreover, in order to make clear the relations between the articles XXXI to
XXXIII on the Erlangen program, I would like to add the following remarks:

1. The invariant theory of the Lorentz group treated in XXX is precisely what
modern physicists call the “special theory of relativity”.

2. The Lorentz group can be seen to be the largest continuous family of the
most general continuous transformations for the finite values of the x, y, z, t, which
transform the quadratic differential form

ds2 = dt2 − dx2 + dy2 + dz2

c2

into itself.
3. Let us suppose, instead of the xyzt, that some real, uniformly differentiable,

finitely continuous functions

w̺ = ϕ̺(x, y, z, t) (̺ = 1, 2, 3, 4)

are introduced. In this way, the ds2, which has just been written, should pass
into a more general quadratic form of the dw, which we shall write immediately in
Einstein’s way:

ds2 =
∑

gµνdw
µdwν .

4. This new ds2 is, of course, the same as that given under 2. with the inertial
character +−−−. Its coefficients gµν are continuous, sufficiently differentiable, real
functions of the w, which are only particularized in that the Riemannian curvature
formed for ds2 vanishes identically.
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5. According to the principles of the Erlangen program, we can now also treat
the special theory of relativity in the way that we based the entire group of all real,
continuous, sufficiently often differentiable, unambiguously reversible transforma-
tions of the w̺, but adjoining the ds2 of 3., i.e., to accept the changes which the
gµν , in the respective transformations of the w, suffer. One obtains unambiguously
determined linear transformations of the gµν , since the relations to which the gµν
are bound as coefficients of a form of vanishing degree of curvature are of too high
a character to be influential. Moreover, it should be noted that not only the sub-
stitution coefficients, but also the gµν , are functions of xyzt and w̺, respectively.
From this we obtain the changes which the differential quotients of the gµν undergo
in the respective transformation. The group “expanded” by all these formulas is to
be taken as a basis.

6. If we do this, we have made a decisive step towards the “general theory of
relativity.” A further step will be that for the coefficients gµν of the ds2, we intro-
duce the most general, for real w everywhere realizable, sufficiently differentiable
functions of w. Then the Riemannian curvature, and the invariant derived from it
called by Hilbert K, are no longer identically zero.

For the rest, the “group” will be selected as indicated under 5. —
By the same token, the question arises as to the context of the world as a

whole, analogous to the considerations in the case of the geometry of the plane
with respect to the considerations in the treatise XXI. This question still seems to
be little elaborated: certain possibilities are given in the treatise XXXIII. In the
special theory of relativity in which, in order to obtain all the points of the world,
we let xyzt run from −∞ to +∞, the whole question falls away naturally.

7. The general theory of relativity of the pure gravitational field results from
Einstein’s basic approach (which was formulated exactly by Einstein and Hilbert
at nearly the same time8) by comparing the gµν to the ten, inversely invariant
equations Kµν = 0, in their totality of the group in question (For the sake of
brevity, I use the designation (5a) of my own note).

8. Let us now take into consideration, aside from gravity, any further physical
phenomena; or, rather, as in the preceding text, following Hilbert’s first note, we
limit ourselves to the electromagnetic processes in empty space.

9. We shall consider this most easily, even in the case of the special theory of
relativity (which, unfortunately, is not expressed in chapter XXX), if, besides our

8 Einstein “On the General Relativity Theory” in the meeting reports of the
Berlin Academy of 11 and 25 November 1915 (pages 799 to 801 respectively pages
844 to 847 of the year), Hilbert in his first comment on the “Foundations of Physics”
in the Göttingen News of 20 Nov. 1915 (cited above). There can be no question of
a priority issue, because both authors pursue quite different ideas (in such a way
that the compatibility of the results did not appear to be certain at first). Einstein
proceeds inductively and immediately thinks of any material system. Hilbert, by
imposing, by the way, the restriction on electrodynamics mentioned in the text,
under (8), from the above-mentioned highest principles of variation. Hilbert also
linked to Mie in particular. It was only in his communication to the Berlin Academy
of 29 October 1916, mentioned above (p. 560), that Einstein made the connection
of the two approaches.
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ds2, we use the linear form
∑

q̺dw
̺

where the real, everywhere continuous, sufficiently differentiable functions q̺, are
the so-called four-potential of the electromagnetic field.

10. The group to be defined now extends to 5. by the fact that, besides the
transformations of the gµν and their differential quotients induced by the transfor-
mations of the w, one now also has the q̺ and their differential quotients.

11. The gµν , q̺, however now are 14, and Eqs. (16a), (16b) of the text:

Kµν + αQµν = 0, Q̺ = 0

are invariant subjected to the extended group. This is in conjunction with (10) the
kernel of the general theory of relativity of physics, as far as this is concerned. —

These formulations, of course, only express in other languages, what was already
said in Einstein and Hilbert. I would particularly like to refer to Hilbert’s second
communication on the Foundations of Physics (in the Göttinger Nachrichten, 1917,
pp. 53–769). Here, on p. 61, it is expressly stated that only those conclusions which
follow from the differential equations of 11. have a physical sense, which, like the dif-
ferential equations themselves (NB in contrast to the group defined under 10.) have
an invariant character. This is mutatis mutandis exactly what is required in the
Erlangen program by the statements of any geometry (arbitrarily characterizable
by a group).

It is scarcely necessary to say that the further development of Einstein’s theory,
as given by Weyl, can also be connected with the scheme of the Erlangen program.

There is even a particularly close relation to individual versions there (Note VI,
Vol. XXVII, pp. 491–492), insofar as not a form ds2, but an equation ds2 = 0 is
used as the basis. K.]

9Provided on December 23, 1916.


